Latest Publications
01 September 2024 • Molecular Ecology
36-year study reveals stability of a wild wheat population across microhabitats
Tal Dahan-Meir, Thomas James Ellis, Fabrizio Mafessoni, Hanan Sela, Ori Rudich, Jacob Manisterski, Naomi Avivi-Ragolsky, Amir Raz, Moshe Feldman, Yehoshua Anikster, Magnus Nordborg, Avraham A. Levy
Abstract
Long-term genetic studies of wild populations are very scarce, but are essential for connecting ecological and population genetics models, and for understanding the dynamics of biodiversity. We present a study of a wild wheat population sampled over a 36-year period at high spatial resolution. We genotyped 832 individuals from regular sampling along transects during the course of the experiment. Genotypes were clustered into ecological microhabitats over scales of tens of metres, and this clustering was remarkably stable over the 36 generations of the study. Simulations show that it is difficult to determine whether this spatial and temporal stability reflects extremely limited dispersal or fine-scale local adaptation to ecological parameters. Using a common-garden experiment, we showed that the genotypes found in distinct microhabitats differ phenotypically. Our results provide a rare insight into the population genetics of a natural population over a long monitoring period.
15 November 2024 • Nature Communications
A single NLR gene confers resistance to leaf and stripe rust in wheat
Davinder Sharma, Raz Avni, Juan Gutierrez-Gonzalez, Rakesh Kumar, Hanan Sela, Manas Ranjan Prusty, Arava Shatil-Cohen, István Molnár, Kateřina Holušová, Mahmoud Said, Jaroslav Doležel, Eitan Millet, Sofia Khazan-Kost, Udi Landau, Gerit Bethke, Or Sharon, Smadar Ezrati, Moshe Ronen, Oxana Maatuk, Tamar Eilam, Jacob Manisterski, Pnina Ben-Yehuda, Yehoshua Anikster, Oadi Matny, …Amir Sharon
Abstract
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
02 January 2024 • Nature Plants
A suberized exodermis is required for tomato drought tolerance
Alex Cantó-Pastor, Kaisa Kajala, Lidor Shaar-Moshe, Concepción Manzano, Prakash Timilsena, Damien De Bellis, Sharon Gray, Julia Holbein, He Yang, Sana Mohammad, Niba Nirmal, Kiran Suresh, Robertas Ursache, G. Alex Mason, Mona Gouran, Donnelly A. West, Alexander T. Borowsky, Kenneth A. Shackel, Neelima Sinha, Julia Bailey-Serres, Niko Geldner, Song Li, Rochus Benni Franke & Siobhan M. Brady
Abstract
Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.
27 September 2023 • Nature Communications
Social isolation shortens lifespan through oxidative stress in ants
Akiko Koto, Makoto Tamura, Pui Shan Wong, Sachiyo Aburatani, Eyal Privman, Céline Stoffel, Alessandro Crespi, Sean Keane McKenzie, Christine La Mendola, Tomas Kay & Laurent Keller
Abstract
Social isolation negatively affects health, induces detrimental behaviors, and shortens lifespan in social species. Little is known about the mechanisms underpinning these effects because model species are typically short-lived and non-social. Using colonies of the carpenter ant Camponotus fellah, we show that social isolation induces hyperactivity, alters space-use, and reduces lifespan via changes in the expression of genes with key roles in oxidation-reduction and an associated accumulation of reactive oxygen species. These physiological effects are localized to the fat body and oenocytes, which perform liver-like functions in insects. We use pharmacological manipulations to demonstrate that the oxidation-reduction pathway causally underpins the detrimental effects of social isolation on behavior and lifespan. These findings have important implications for our understanding of how social isolation affects behavior and lifespan in general.
17 July 2024 • Theoretical and Applied Genetics
Nikolai Govta, Andrii Fatiukha, Liubov Govta, Curtis Pozniak, Assaf Distelfeld, Tzion Fahima, Diane M Beckles, Tamar Krugman
Abstract
Genetic dissection of a QTL from wild emmer wheat, QGpc.huj.uh-5B.2, introgressed into bread wheat, identified candidate genes associated with tolerance to nitrogen deficiency, and potentially useful for improving nitrogen-use efficiency. Nitrogen (N) is an important macronutrient critical to wheat growth and development; its deficiency is one of the main factors causing reductions in grain yield and quality. N availability is significantly affected by drought or flooding, that are dependent on additional factors including soil type or duration and severity of stress. In a previous study, we identified a high grain protein content QTL (QGpc.huj.uh-5B.2) derived from the 5B chromosome of wild emmer wheat, that showed a higher proportion of explained variation under water-stress conditions. We hypothesized that this QTL is associated with tolerance to N deficiency as a possible mechanism underlying the higher effect under stress. To validate this hypothesis, we introgressed the QTL into the elite bread wheat var. Ruta, and showed that under N-deficient field conditions the introgression IL99 had a 33% increase in GPC (p < 0.05) compared to the recipient parent. Furthermore, evaluation of IL99 response to severe N deficiency (10% N) for 14 days, applied using a semi-hydroponic system under controlled conditions, confirmed its tolerance to N deficiency. Fine-mapping of the QTL resulted in 26 homozygous near-isogenic lines (BC4F5) segregating to N-deficiency tolerance. The QTL was delimited from - 28.28 to - 1.29 Mb and included 13 candidate genes, most associated with N-stress response, N transport, and abiotic stress responses. These genes may improve N-use efficiency under severely N-deficient environments. Our study demonstrates the importance of WEW as a source of novel candidate genes for sustainable improvement in tolerance to N deficiency in wheat.
10 April 2024 • Nature Communications
Miaomiao Li, Huaizhi Zhang, Huixin Xiao, Keyu Zhu, Wenqi Shi, Dong Zhang, Yong Wang, Lijun Yang, Qiuhong Wu, Jingzhong Xie, Yongxing Chen, Dan Qiu, Guanghao Guo, Ping Lu, Beibei Li, Lei Dong, Wenling Li, Xuejia Cui, Lingchuan Li, Xiubin Tian, Chengguo Yuan, Yiwen Li, Dazhao Yu, Eviatar Nevo, Tzion Fahima, Hongjie Li, Lingli Dong, Yusheng Zhao & Zhiyong Liu
Abstract
Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.
18 April 2024 • Journal of Molecular Evolution
Interconnected Codons: Unravelling the Epigenetic Significance of Flanking Sequences in CpG Dyads
Leo Douglas Creasey & Eran Tauber
Abstract
Hypothesizing that CpG codon dyads, formed by consecutive codons containing a cytosine-guanine pair (NNC-GNN), may play a crucial role in gene function, we conducted an extensive analysis to investigate their distribution and conservation within mammalian genes. Our findings reveal that genes characterized by a high density of CpG codon dyads are notably associated with homeobox domains and RNA polymerase II transcription factors. Conversely, genes exhibiting low CpG codon dyad density have links to DNA damage repair and mitosis. Importantly, our study identifies a re-markable increase in expressed genes that harbor CpG during embryonic development, suggesting their potential involvement in gene regulation at these developmental stages. These results under-score the functional significance of CpG codon dyads in DNA methylation and gene expression, fur-ther demonstrating the coevolution of consecutive codons and their contribution to codon usage bias.
15 February 2024 • ACS Omega
Francesco Coppola, Tomáš Pavlíček and Petr Král
Abstract
The COVID-19 infection has been more problematic for individuals with certain health predispositions. Coronaviruses could also interfere with neural diseases if the viruses succeed in entering the brain. Therefore, it might be of principal interest to examine a possible coupling of coronaviruses and amyloid fibrils. Here, molecular dynamics simulations were used to investigate direct coupling of SARS-CoV-2 and Aβ fibrils, which play a central role in neural diseases. The simulations revealed several stable binding configurations and their dynamics of Aβ42 fibrils attached to spike proteins of the Omicron and Alpha variants of SARS-CoV-2.
09 January 2024 • nature ecology & evolution
Xuan An, Leyan Mao, Yinjia Wang, Qinqin Xu, Xi Liu, Shangzhe Zhang, Zhenglei Qiao, Bowen Li, Fang Li, Zhuoran Kuang, Na Wan, Xiaolong Liang, Qijiao Duan, Zhilong Feng, Xiaojie Yang, Sanyuan Liu, Eviatar Nevo, Jianquan Liu, Jay F. Storz & Kexin Li
Abstract
Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai–Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.
5 December 2023 • Nature Communications
Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle
Yang Zhao, Zhizhong Zheng, Zhihui Zhang, Yandong Xu, Eric Hillpot, Yifei S. Lin, Frances T. Zakusilo, J. Yuyang Lu, Julia Ablaeva, Seyed Ali Biashad, Richard A. Miller, Eviatar Nevo, Andrei Seluanov & Vera Gorbunova
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species’ cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
22 October 2023 • Journal of Fungi
Maxim Krakhmalnyi, Omoanghe S. Isikhuemhen, Mikael Jeppson, Solomon P. Wasser, Eviatar Nevo
Abstract
The diversity of Lycoperdaceae in Israel was studied. Molecular phylogenetic relationships within the family, and genus Lycoperdon in particular, were inferred using original ITS rDNA sequences of 58 samples belonging to 25 species from Israel and six other countries, together with 66 sequences stored in the GenBank database. The current molecular phylogenetic study recovered the family Lycoperdaceae as a monophyletic group, which was supported in both maximum likelihood and Bayesian analyses. The clades corresponding to the genera Apioperdon, Bovista, Calvatia, Disciseda, and Lycoperdon were revealed. The taxonomic structure of the named genera was partially resolved. Within the genus Lycoperdon, some species received significant statistical support; however, their relationships, as well as the problem of the genus monophyly, mostly remained questionable. As a result of a thorough literature survey, extensive sample collection, and studies of the material stored in the Herbarium of the Institute of Evolution, University of Haifa (HAI, Israel), fifteen species representing five genera were found in the territory of Israel. Six species, namely Apioperdon pyriforme, Bovista aestivalis, Calvatia candida, Lycoperdon decipiens, L. niveum, and L. perlatum, are new additions to the diversity of Lycoperdaceae in Israel. Detailed macro- and micromorphological descriptions, ecology, geography, and critical notes, together with light microscopy photos and SEM micrographs, are provided. In-depth discussion on some taxonomically challenging species is presented.
6 July 2023 • Plant Communications
Yinghui Li , Zhen-Zhen Wei , Hanan Sela, Liubov Govta, Valentyna Klymiuk, Rajib Roychowdhury, Harmeet Singh Chawla, Jennifer Ens, Krystalee Wiebe, Valeria Bocharova, Roi Ben-David, Prerna B. Pawar, Yuqi Zhang, Samidha Jaiwar, István Molnár, Jaroslav Doležel, Gitta Coaker 8, Curtis J. Pozniak, Tzion Fahima
Abstract
Gene cloning in repeat-rich polyploid genomes remains challenging. Here, we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene (R-gene) Pm69 derived from tetraploid wild emmer wheat. A conventional positional cloning approach was not effective owing to suppressed recombination. Chromosome sorting was compromised by insufficient purity. A Pm69 physical map, constructed by assembling Oxford Nanopore Technology (ONT) long-read genome sequences, revealed a rapidly evolving nucleotide-binding leucine-rich repeat (NLR) R-gene cluster with structural variations. A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing. Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel. Pm69 was successfully introgressed into cultivated wheat, and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes.
14 June 2023 • Biology
Loren Khatib, Bengisu Sezen Subasi, Bettina Fishman, Martin Kapun, and Eran Tauber
Abstract
Our understanding of the gene regulatory network that constitutes the circadian clock has greatly increased in recent decades, notably due to the use of Drosophila as a model system. In contrast, the analysis of natural genetic variation that enables the robust function of the clock under a broad range of environments has developed more slowly. In the current study, we analyzed comprehensive genome sequencing data from wild European populations of Drosophila, which were densely sampled through time and space. We identified hundreds of single nucleotide polymorphisms (SNPs) in nine genes associated with the clock, 276 of which exhibited a latitudinal cline in their allele frequencies. While the effect sizes of these clinal patterns were small, indicating subtle adaptations driven by natural selection, they provided important insights into the genetic dynamics of circadian rhythms in natural populations. We selected nine SNPs in different genes and assessed their impact on circadian and seasonal phenotypes by reconstructing outbred populations fixed for either of the SNP alleles, from inbred DGRP strains. The circadian free-running period of the locomotor activity rhythm was affected by an SNP in doubletime (dbt) and eyes absent (Eya). The SNPs in Clock (Clk), Shaggy (Sgg), period (per), and timeless (tim) affected the acrophase. The alleles of the SNP in Eya conferred different levels of diapause and the chill coma recovery response.
22 May 2023 • Nature genetics
Tzion Fahima & Gitta Coaker
Abstract
Two studies describe kinase fusion proteins (KFPs) that regulate the perception and deception of wheat pathogens. These highlight the emergence of KFPs as plant immune regulators and emphasize the importance of crop wild relatives as a reservoir for resistance breeding and global food security.
17 April 2023 • PNAS
Pnina Cohen, Roberto Bacilieri, Jazmín Ramos-Madrigal, Eyal Privman, Elisabetta Boaretto, Audrey Weber, Daniel Fuks, Ehud Weiss, Tali Erickson-Gini, Scott Bucking, Yotam Tepper, Deborah Cvikel, Joshua Schmidt, M. Thomas P. Gilbert, Nathan Wales, Guy Bar-Oz and Meirav Meir
Abstract
Recent excavations of Late Antiquity settlements in the Negev Highlands of southern Israel uncovered a society that established commercial-scale viticulture in an arid environment [D. Fuks et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19780–19791 (2020)]. We applied target-enriched genome-wide sequencing and radiocarbon dating to examine grapevine pips that were excavated at three of these sites. Our analyses revealed centuries long and continuous grape cultivation in the Southern Levant. The genetically diverse pips also provided clues to ancient cultivation strategies aimed at improving agricultural productivity and ensuring food security. Applying genomic prediction analysis, a pip dated to the eighth century CE was determined to likely be from a white grape, to date the oldest to be identified. In a kinship analysis, another pip was found to be descendant from a modern Greek cultivar and was thus linked with several popular historic wines that were once traded across the Byzantine Empire. These findings shed light on historical Byzantine trading networks and on the genetic contribution of Levantine varieties to the classic Aegean landscape.
1 February 2023 • Nature Communications
Gilad Gabay, Hanchao Wang, Junli Zhang, Jorge I. Moriconi, German F. Burguener, Leonardo D. Gualano, Tyson Howell, Adam Lukaszewski, Brian Staskawicz, Myeong-Je Cho, Jaclyn Tanaka, Tzion Fahima, Haiyan Ke, Katayoon Dehesh, Guo-Liang Zhang, Jin-Ying Gou, Mats Hamberg, Guillermo E. Santa-María & Jorge Dubcovsky
Abstract
Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals
12 September 2022 • International Journal of Molecular Sciences
Nikolai Govta, Iris Polda, Hanan Sela, Yafit Cohen, Diane M. Beckles, Abraham B. Korol, Tzion Fahima, Yehoshua Saranga and Tamar Krugman
Abstract
The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a genome-wide association study (GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D compared to W conditions, while the values for two traits were higher under D. High heritability (H2 = 0.5–0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle length, and plant height. Days to heading and grain yield could be partitioned based on accession origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits, 82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions showing high and/or stable yields under D conditions that can be recommended for cultivation in regions under the threat of global climate change.
Abstract
The aim of the present study was to identify the structure of active compounds in Cyathus stratus that previously demonstrated anti-pancreatic cancer activity. The active compounds were purified from a crude extract by a series of RP-18 preparative chromatography using homemade octadecyl silica gel column. HPLC injection of the crude extract revealed a chromatogram with three main peaks with retention times (RT) 15.6, 18.2, and 22.5 min. Each fraction that exhibited promising activity in vitro was further separated using various available chromatographic techniques. The purified compound with the ultimate anti-cancer activity appeared at RT of 15.8 in the HPLC chromatogram with more than 90% purity. The main peak at the mass spectra appeared at m/z = 446.2304 with the calculated molecular formula of C25H34O7. One- and two-dimensional NMR analyses indicated that the structure of the active molecule (peak 15.8 min in HPLC) was identified as striatal C. Exposure of human pancreatic cancer cells to purified striatal C resulted in induction of apoptosis. Further studies are needed in order to develop a method for the synthesis of striatal in order to use it in clinical studies for treatment of cancer.
3 March 2022 • Weed Research
Jackline Abu-Nassar, Shira Gal,Ilana Shtein, Assaf Distelfeld, Maor Matzrafi
Abstract
Solanum rostratum Dunal is an aggressive invasive weed invading many countries worldwide. Our previous study indicated differences in herbicide response between young and mature plants. In this study, we explore the functional leaf surface anatomy of S. rostratum. Leaf area surface characterisation was performed by counting stomata, stellate and glandular trichomes on upper and lower leaf sides on scanning electron microscopy (SEM) micrographs. Total cuticular waxes were extracted and weighed in young and mature leaves. Young and mature leaves were tested for water permeability of the epidermal surfaces using the apoplastic tracer Calcofluor. S. rostratum plants were sprayed with luminous trace colour solution with and without 1% surfactant, droplet number and area were calculated. In young S. rostratum leaves, the leaf surface was densely covered with stellate trichomes on both leaf sides; however, in the mature leaf, stellate trichomes density became low, and prickle rigid increased in mature leaves. Wax amount was significantly higher in mature leaves, while number of stomata was higher in young leaves. Young leaves showed high leaf permeability, with the fluorescent dye permeating the leaf staining the vascular bundles. In young and mature leaves treated with a spraying solution with the addition of surfactant, low droplet number alongside higher coverage area was recorded. Our data highlight the notable differences in leaf epidermal structure of young versus mature plants. We conclude that differences in herbicide permeability, water loss and herbivory in young versus mature leaves of S. rostratum are governed by variation in leaf functional anatomy.
7 March 2022 • Nature Ecology & Evolution
Gabriela M. Pinho, Julien G. A. Martin, Colin Farrell, Amin Haghani, Joseph A. Zoller, Joshua Zhang, Sagi Snir, Matteo Pellegrini, Robert K. Wayne, Daniel T. Blumstein & Steve Horvath
Abstract
Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators.
17 February 2022 • Frontiers in Physiology
Mirko Pegoraro, Emily Sayegh Rezek, Bettina Fishman and Eran Tauber
Abstract
Cryptochrome (CRY) is a conserved protein associated with the circadian clock in a broad range of organisms, including plants, insects, and mammals. In Drosophila, cry is a pleiotropic gene that encodes a blue light-dedicated circadian photoreceptor, as well as an electromagnetic field sensor and a geotaxis behavior regulator. We have generated a panel of nearly-isogenic strains that originated from various wild populations and which carry different natural alleles of cry. Sequencing of these alleles revealed substantial polymorphism, the functional role of which was elusive. To link this natural molecular diversity to gene function, we relied on association mapping. Such analysis revealed two major haplogroups consisting of six linked nucleotides associated with circadian phase (haplotypes All1/All2). We also generated a maximum-likelihood gene-tree that uncovered an additional pair of haplogroups (B1/B2). Behavioral analysis of the different haplotypes indicated significant effect on circadian phase and period, as well on the amount of activity and sleep. The data also suggested substantial epistasis between the All and B haplogroups. Intriguingly, circadian photosensitivity, assessed by light-pulse experiments, did not differ between the genotypes. Using CRISPR-mediated transgenic flies, we verified the effect of B1/B2 polymorphism on circadian phase. The transgenic flies also exhibited substantially different levels of cry transcription. We, moreover, analyzed the geographical distribution of the B1/B2 haplotypes, focusing on a 12 bp insertion/deletion polymorphism that differentiates the two haplotypes. Analysis of cry sequences in wild populations across Europe revealed a geographical cline of B1/B2 indel frequency, which correlated with seasonal bioclimatic variables. This spatial distribution of cry polymorphism reinforces the functional importance of these haplotypes in the circadian system and local adaptation.
Abstract
Stripe rust is a devastating disease in wheat that causes substantial yield loss around the world. The most effective strategy for mitigating yield loss is to develop resistant cultivars. The wild relatives of wheat are good sources of resistance to fungal pathogens. Here, we used a genome-wide association study (GWAS) to identify loci associated with stripe rust (causal agent: Puccinia striiformis f. sp. tritici) resistance in wild emmer (Triticum dicoccoides) at the seedling stage, in the greenhouse, and at the adult plant stage, in the field. We found that the two major loci contributing to resistance in our wild emmer panel were the previously cloned seedling-stage resistance gene, Yr15, and the adult-plant-stage resistance gene, Yr36. Nevertheless, we detected 12 additional minor QTLs that additionally contribute to adult plant resistance and mapped a locus on chromosome 3AS that tentatively harbors a novel seedling resistance gene. The genotype and phenotype data generated for the wild emmer panel, together with the detected SNPs associated with resistance to stripe rust, provide a valuable resource for disease-resistance breeding in durum and bread wheat
27 February 2022 • Applied Microbiology
Abstract
Based on the collected data on the diversity of microalgae and environmental indicators in dry and wet seasons during 2011–2018, from 45 samples, 59 species of microalgae were identified in the ornithological object—Lake Agmon in the Hula Valley. In the samples of periphyton and microphytobenthos, diatoms predominated. Bioindication analysis and statistical mapping revealed the most pronounced zones of influence on the lake ecosystem, as well as indicators of the environment and diversity that clearly demonstrate them. The correlation between the distribution of TDS of water over the lake surface and the distribution of green, diatom microalgae and cyanobacteria detected two areas of impact from the old channel of the Jordan River in the northwestern part and from the drainage channel in the northeastern parts of the lake. The area on the east coast, in contact with the resting fields of migratory birds, has provided nutrients that stimulate the development of green algae and cyanobacteria. This showed implicit links in the lake ecosystem using bioindicators make it possible to recommend them for monitoring in combination with statistical mapping, which visualizes the distribution of data and is easily accessible for the decision-making system for the management of a protected ornithological lake
Abstract
While it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the 'HbS mutation' when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible
Summary
Cylindrospermopsis raciborskii is a central bloom-forming cyanobacteria. However, despite its ecological significance, little is known of its interactions with the phages that infect it. Currently only a single sequenced genome of a Cylindrospermopsis-infecting phage is publicly available. Here we describe the isolation and characterization of Cr-LKS3, a second phage infecting Cylindrospermopsis. Cr-LKS3 is a siphovirus with a higher genome similarity to prophages within heterotrophic bacteria genomes than to any other cyanophage/cyano-prophage, suggesting that it represents a novel cyanophage group. The function, order and orientation of the 72 genes in the Cr-LKS3 genome are highly similar to those of Escherichia virus Lambda (hereafter Lambda), despite the very low sequence similarity between these phages, showing high evolutionary convergence despite the substantial difference in host characteristics. Similarly to Lambda, the genome of Cr-LKS3 contains various genes that are known to be central to lysogeny, suggesting it can enter a lysogenic cycle. Cr-LKS3 has a unique ability to infect a host with a dramatically different GC content, without carrying any tRNA genes to compensate for this difference. This ability, together with its potential lysogenic lifestyle shed light on the complex interactions between C. raciborskii and its phages
21 January 2022 • Journal of Fungi
Alona Yu. Biketova, Matteo Gelardi, Matthew E. Smith, ...,Solomon P. Wasser, Ursula Peintner, Eviatar Nevo, Britt A. Bunyard and Alfredo Vizzini
Abstract
The boletoid genera Butyriboletus and Exsudoporus have recently been suggested by some researchers to constitute a single genus, and Exsudoporus was merged into Butyriboletus as a later synonym. However, no convincing arguments have yet provided significant evidence for this congeneric placement. In this study, we analyze material from Exsudoporus species and closely related taxa to assess taxonomic and phylogenetic boundaries between these genera and to clarify species delimitation within Exsudoporus. Outcomes from a multilocus phylogenetic analysis (ITS, nrLSU, tef1-α and rpb2) clearly resolve Exsudoporus as a monophyletic, homogenous and independent genus that is sister to Butyriboletus. An accurate morphological description, comprehensive sampling, type studies, line drawings and a historical overview on the nomenclatural issues of the type species E. permagnificus are provided. Furthermore, this species is documented for the first time from Israel in association with Quercus calliprinos. The previously described North American species Exsudoporus frostii and E. floridanus are molecularly confirmed as representatives of Exsudoporus, and E. floridanus is epitypified. The eastern Asian species Leccinum rubrum is assigned here to Exsudoporus based on molecular evidence, and a new combination is proposed. Sequence data from the original material of the Japanese Boletus kermesinus were generated, and its conspecificity with L. rubrum is inferred as formerly presumed based on morphology. Four additional cryptic species from North and Central America previously misdetermined as either B. frostii or B. floridanus are phylogenetically placed but remain undescribed due to the paucity of available material. Boletus weberi (syn. B. pseudofrostii) and Xerocomus cf. mcrobbii cluster outside of Exsudoporus and are herein assigned to the recently described genus Amoenoboletus. Biogeographic distribution patterns are elucidated, and a dichotomous key to all known species of Exsudoporus worldwide is presented.
Abstract
Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual components of nutrients in the rivers of Eastern Siberia changes depending on the active layer thickness of the permafrost (ALT) and to elucidate whether the ALT is a factor that can control nutrient flux to the Arctic Ocean. The method of canonical correlation analysis was applied to the data on the concentration of nutrients in the 12 largest rivers of Eastern Siberia and the active layer thickness in their catchments. We found that the concentration of nutrients such as ammonium ion (NH4) and total phosphorus (Ptotal) in river waters is higher in catchments with a deeper active layer. The waters of the mountain rivers in the south of the region (the Chara and Vitim rivers) are the richest in nutrients. Arctic rivers such as the Indigirka and Anabar were low in nutrients. The permeability of soils also affects the discharge of nutrients into rivers with surface runoff. We conclude that in the future, in the context of global climatic changes and the projected deepening of the active layer throughout the permafrost zone of the Northern Hemisphere, an increase in the supply of nutrients to the Arctic Ocean is possible
26 December 2021 • Transylvanian Review of Systematical and Ecological Research
Abstract
This paper presents data compilation for indicator species of organic pollution and trophic state of continental waters. Information was collected from research papers, monographs, electronic resources, and our research. Altogether 316 species of higher plants, plants, mosses, charophytes, protozoan, and bacteria from 11 taxonomical phyla are represented with ecological preferences for saprobity indicators with saprobity index (S) and indicators of trophic state. This comprehensive data can be used for the purpose of aquatic ecosystem assessment and monitoring of water quality based on bioindication methods.
03 December 2021 • Oceanological and Hydrobiological Studies
Abstract
The presented research was conducted in 2018–2019 in the Peshawar Valley, Pakistan, to study for the first time the effect of water quality on the spatial distribution of charophytes. A total of six taxa of charophytes were found at 41 sites in the Peshawar Valley along the banks of seven rivers, 16 streams and two wetlands: Chara braunii C.C.Gmelin, C. connivens Salzmann ex A. Braun, C. contraria A. Braun ex Kützing, C. globularis Thuiller, C. vulgaris Linnaeus, and Nitellopsis obtusa (Desvaux) J. Groves. Chara vulgaris was the most abundant species, followed by C. globularis, and C. contraria. Water pH, electrical conductivity (EC), total dissolved solids (TDS), salinity and dissolved oxygen (DO) were within the permissible limits for Pakistan, while water temperature, oxidation reduction potential (ORP) and resistivity showed deviations. Canonical Correspondence Analysis (CCA) revealed that DO affected Chara vulgaris, pH and resistivity affected C. braunii, C. connivens and C. globularis, temperature and ORP affected C. contraria and Nitellopsis obtusa. Furthermore, CCA showed that TDS, EC, and salinity had no effect on the spatial distribution of Chara contraria, C. vulgaris and Nitellopsis obtusa. Chara contraria and Nitellopsis obtusa should be protected under VU (Vulnerable) status (IUCN) along with their habitats
24 November 2021 • Water Journal
Olena Bilous, Sergey Afanasyev, Olena Lietytska, Oksana Manturova, Oleksandr Polishchuk, Inna Nezbrytska, Maryna Pohorielova andSophia Barinova
Abstract
The river basin of Siversky Donets is of great scientific interest since this river runs through a territory with heavy industry (in particular, coal mining, chemical processing and metal industries). Within the basin, rivers of different sizes were explored (small, medium, large and extra-large) that flow through siliceous and calcareous rocks on the same elevation (lowland—below 200 m a.s.l.). Phytoplankton, as one of the Biological Quality Element, was used to perform the assessment of ecological status of the water bodies within the Siversky Donets river basin in 2019. The state monitoring program based on the updated approaches has been implemented in the river basin for the first time. The composition of phytoplankton species in the basin comprised 167 species (168 intraspecies taxa), mainly Bacillariophyta (63%) and Chlorophyta (22%) with the presence of other species (Cyanobacteria, Charophyta, Chrysophyta, Dinophyta and Euglenophyta). High species diversity and divisions amount are a distinctive property of the smaller rivers, while the bigger rivers show lower number of divisions. The “bloom” events, which are important ecological factors, were not detected in the Siversky Donets river basin. Algal species composition in plankton samples of the basin was identified and series of ecological parameters, such as habitat preferences, temperature, pH, salinity, oxygenation and organic water pollution according to Watanabe and Sládeček’s index of saprobity (S) trophic state and nitrogen uptake metabolism were analyzed. The ecological conclusions were also verified by a canonical correspondence analysis (CCA). The significance of the Canonical Correspondence Analysis (CCA) results was estimated of by a Monte-Carlo permutation test. The high concentrations of inorganic phosphorus compounds (permanganate index (CODMn)) and nitrite ions favored the diversity of Chlorophyta and Cyanobacteria diversity correlated with the levels of bicarbonate and CODMn. High diversity of diatoms was facilitated by the total amount of dissolved solids and chemical oxygen demand (COD). It was found that low water quality could be associated with conditions leading to predominant growth of the mentioned groups of algae. According to the analysis, the highest water quality was characterized by balanced phytoplankton composition and optimal values of the environmental variables. The sites with reference conditions are proposed for future monitoring.
16 July 2021 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")
Sviatoslav Rybnikov, Zeev Frenkel, Abraham B. Korol and Tzion Fahima
Abstract
Antagonistic interactions and co-evolution between a host and its parasite are known to cause oscillations in the population genetic structure of both species (Red Queen dynamics). Potentially, such oscillations may select for increased sex and recombination in the host, although theoretical models suggest that this happens under rather restricted values of selection intensity, epistasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the host can be favored over the optimal constant recombination. Two forms of the host recombination dependence on the parasite pressure were considered: either proportionally to the risk of infection (prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under either strong overall selection and high recombination rate in the host, or weak overall selection and low recombination rate in the host. In the latter case, the system’s dynamics are considerably more complex. The prevention strategy is favored more often than the remediation one. It is noteworthy that plastic recombination can be favored even when any constant recombination is rejected, making plasticity an evolutionary mechanism for the rescue of host recombination.
28 May 2020 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")
Zhen-Zhen Wei, Valentyna Klymiuk, Valeria Bocharova, Curtis Pozniak and Tzion Fahima
Abstract
The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.
13 March 2020 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")
Yu He, Lihua Feng, Yun Jiang , Lianquan Zhang, Jun Yan, Gang Zhao, Jirui Wang, Guoyue Chen, Bihua Wu, Dengcai Liu, Lin Huang and Tzion Fahima
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease of wheat. The wild emmer gene, Yr15 (Wtk1), which confers a strong broad-spectrum resistance to Pst isolates, is composed of kinase and pseudokinase domains. The analysis of 361 wild emmer accessions from a wide range of natural habitats confirms that functional Wtk1 is distributed mainly along a narrow axis from Mt. Carmel to Mt. Hermon regions, in the northern part of Israel, where environmental conditions are favorable to the onset of stripe rust. An analysis of full-length Wtk1 DNA sequences from 49 wild emmer accessions identified three haplotypes and extremely low nucleotide diversity (π = 0.00002). The sequence diversity of Wtk1 is 9.5 times lower than that of broad-spectrum partial resistance gene Yr36 (π = 0.00019), and both are in sharp contrast to the high level of nucleotide diversity previously reported for race-specific resistance genes (e.g., Lr10 and Pm3). However, the nonfunctional wtk1 sequences possess high level of nucleotide diversity (π = 0.07). These results may reflect the different resistance mechanisms and the different evolutionary processes that shaped these resistance genes. Yr15 was absent in 189 Chinese wheat landraces and was present in only 1.02% of the 583 tested modern Chinese wheat cultivars. These results corroborate our previous results showing that Yr15 was absent in 94% of a worldwide collection of 513 wheat cultivars, therefore indicating the importance of Yr15 in wheat stripe rust resistance breeding programs in China and elsewhere around the globe.
29 November 2019 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")
Moshe Ronen, Hanan Sela, Eyal Fridman, Rafael Perl-Treves, Doris Kopahnke, Alexandre Moreau, Roi Ben-David, and Arye Harel
Abstract
Net blotch (NB) is a major disease of barley caused by the fungus Pyrenophora teres f. teres (Ptt), and P. teres f. maculata (Ptm). Ptt and Ptm infect the cultivated crop (Hordeum vulgare) and its wild relatives (H. vulgare ssp. spontaneum and H. murinum ssp. glaucum). The main goal of this research was to study the NB-causing pathogen in the crop center of origin. To address this, we have constructed a Ptt (n = 15) and Ptm (n = 12) collection isolated from three barley species across Israel. Isolates were characterized genetically and phenotypically. Aggressiveness of the isolates was determined based on necrotrophic growth rate on detached leaves of barley. In addition, isolates were genetically characterized by the mating type, followed by phylogenetic analysis, clustering them into seven groups. The analysis showed no significant differentiation of isolates based on either geographic origin, host of origin or form (Ptt vs. Ptm). Nevertheless, there was a significant difference in aggressiveness among the isolates regardless of host species, geographic location or sampling site. Moreover, it was apparent that the isolates derived from wild hosts were more variable in their necrotrophic growth rate, compared to isolates sampled from cultivated hosts, thereby suggesting that NB plays a major role in epidemiology at the center of barley origin where most of the diversity lies. Ptm has significantly higher necrotrophic and saprotrophic growth rates than Ptt, and for both a significant negative correlation was found between light intensity exposure and growth rates
14 November 2021 • Diversity Journal
Abstract
Lake Hula, the core of one of the most extensive wetland complexes in the Eastern Mediterranean, was drained in 1951–1958. However, about 350 hectares of papyrus marshes were allocated in the southwestern part of the previous lake and became the Hula Nature Reserve status, the first of two wetlands in Israel included in the Ramsar List of Wetlands of International Importance. The list of algae and cyanobacteria species of Lake Hula was compiled by us for the first time based on data from publications of 1938–1958, as well as our research in the Hula Nature Reserve, obtained within the framework of the monitoring program for 2007–2013. The list includes 225 species and intraspecies of algae and cyanobacteria belonging to eight phyla. The dynamics of the species richness of algae and cyanobacteria flora for 1938–2013 are shown. Species-bioindicators of water quality have been identified, and the change in their composition by ecological groups for a period of about a hundred years has been shown. Based on the species richness of algae communities, water quality indices were calculated with particular attention to changes in trophic status during the study period. The algae flora of Lake Hula and Hula Nature Reserve was found to be similar, but bioindication has revealed an increase in salinity and organic pollution in recent years
21 Jul 2021 • Geomicrobiology Journal
Abstract
We studied the effect of microclimatic gradient on the spatial (8 habitats) and seasonal (autumn, winter, and summer) variations of culturable soil microfungal communities at the north-facing slope (NFS) and the south-facing slope (SFS) of Nahal Boker, the Central Negev Desert, Israel. Using the soil dilution plate method, a total of 122 species from 56 genera was isolated. The communities' composition was subjected to pronounced interslope variations in each season. While xerotolerant melanin-containing species (mainly with the protective multicellular spore morphology) predominated in the soil of NFS, peaking up in the summer, thermotolerant and thermophilic Aspergillus spp. were especially abundant at the SFS. Aspergilli also dominated the thermotolerant communities isolated at 37 °C from both slopes. The more severe microclimatic regime at the SFS resulted in the least pronounced spatial and seasonal intraslope variability of the community composition as compared to the more benign and heterogeneous NFS. The quantitative parameter—the density of microfungal isolates, exhibited significant and positive relationship with organic matter and moisture content. In seasonal dynamics, the severe summer conditions significantly reduced the differences in isolate density at the NFS, which were markedly expressed in the autumn and winter between habitats receiving additional water by runoff and the adjacent habitats that did not benefit from runoff water.
25 October 2021 • The Faseb journal
Shaqed Carasso, Bettina Fishman, Liel Stelmach Lask, Tamar Shochat, Naama Geva-Zatorsky, Eran Tauber
Abstract
Patterns of diurnal activity differ substantially between individuals, with early risers and late sleepers being examples of opposite chronotypes. Growing evidence suggests that the late chronotype significantly impacts the risk of developing mood disorders, obesity, diabetes, and other chronic diseases. Despite the vast potential of utilizing chronotype information for precision medicine, those factors that shape chronotypes remain poorly understood. Here, we assessed whether the various chronotypes are associated with different gut microbiome compositions. Using metagenomic sequencing analysis, we established a distinct signature associated with chronotype based on two bacterial genera, Alistipes (elevated in “larks”) and Lachnospira (elevated in “owls”). We identified three metabolic pathways associated with the early chronotype, and linked distinct dietary patterns with different chronotypes. Our work demonstrates an association between the gut microbiome and chronotype and may represent the first step towards developing dietary interventions aimed at ameliorating the deleterious health correlates of the late chronotype.
1 September 2021 • Molecular Biology and Evolution journal
Kapun, M., Nunez, J.C.B., (and 66 others, including Tauber, E)
Abstract
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
19 October 2021 • Proceedings of the National Academy of Sciences
Quanjun Hu, Yazhen Ma, Terezie Mandáková, Sheng Shi, Chunlin Chen, Pengchuan Sun, Lei Zhang, Landi Feng, Yudan Zheng, Xiaoqin Feng, Wenjie Yang, Jiebei Jiang, Ting Li, Pingping Zhou, Qiushi Yu, Dongshi Wan, Martin A. Lysak, Zhenxiang Xi, Eviatar Nevo, and Jianquan Liu
Abstract
Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.
07 July 2021 • Theoretical and Applied Genetics
Yinghui Li, Zhen-Zhen Wei, Andrii Fatiukha, Samidha Jaiwar, Hanchao Wang, Samiha Hasan, Zhiyong Liu, Hanan Sela, Tamar Krugman & Tzion Fahima
Abstract
Wild emmer wheat (WEW), the tetraploid progenitor of durum and bread wheat, is a valuable genetic resource for resistance to powdery mildew fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). PmG16 gene, derived from WEW, confers high resistance to most tested Bgt isolates. We mapped PmG16 to a 1.4-cM interval between the flanking markers uhw386 and uhw390 on Chromosome 7AL. Based on gene annotation of WEW reference genome Zavitan_V1, 34 predicted genes were identified within the ~ 3.48-Mb target region. Six genes were annotated as associated with disease resistance, of which TRIDC7AG077150.1 was found to be highly similar to Pm60, previously cloned from Triticum urartu, and resides in the same syntenic region. The functional molecular marker (FMM) for Pm60 (M-Pm60-S1) co-segregated with PmG16, suggesting the Pm60 ortholog from WEW (designated here as TdPm60) as a strong candidate for PmG16. Sequence alignment identified only eight SNPs that differentiate between TdPm60 and TuPm60. Furthermore, TdPm60 was found to be present also in the WEW donor lines of the powdery mildew resistance genes MlIW172 and MlIW72, mapped to the same region of Chromosome 7AL as PmG16, suggesting that TdPm60 constitutes a candidate also for these genes. Furthermore, screening of additional 230 WEW accessions with Pm60 specific markers revealed 58 resistant accessions from the Southern Levant that harbored TdPm60, while none of the susceptible accessions showed the presence of this gene. Deployment of PmG16 in Israeli modern bread wheat cultivar Ruta conferred resistance against several local Bgt isolates.
16 September 2021 • Atmosphere
Doru Bănăduc, Alexandru Sas, Kevin Cianfaglione, Sophia Barinova and Angela Curtean-Bănăduc
Abstract
In spite of the obvious climate changes effects on the Carpathian Basin hydrographic nets fish fauna, studies on their potential refuge habitats in drought periods are scarce. Multiannual (2016–2021) research of fish in some streams located in the Saxon Villages area during hydrological drought periods identified, mapped, and revealed the refuge aquatic habitats presence, management needs, and importance for fish diversity and abundance for small rivers. The impact of increasing global temperature and other human activities induced hydrologic net and habitats alteration, decreased the refuge habitats needed by freshwater fish, diminished the fish abundance, and influenced the spatial and temporal variation in fish assemblage structure in the studied area. The sites more than one meter in depth in the studied lotic system were inventoried and all 500 m of these lotic systems were also checked to see what species and how many individuals were present, and if there is was difference in their abundance between refuge and non-refuge 500 m sectors. The scarce number of these refuges due to relatively high soil erosion and clogging in those basins and the cumulative effects of other human types of impact induced a high degree of pressure on the fish fauna. Overall, it reduced the role of these lotic systems as a refuge and for reproduction for the fish of downstream Târnava Mare River, into which all of them flow. Management elements were proposed to maintain and improve these refuges’ ecological support capacity.
Abstract
The evolutionary outcomes of high elevation adaptation have been extensively described. However, whether widely distributed high elevation endemic animals adopt uniform mechanisms during adaptation to different elevational environments remains unknown, especially with respect to extreme high elevation environments. To explore this, we analysed the phenotypic and genomic data of seven populations of plateau zokor (Myospalax baileyi) along elevations ranging from 2,700 to 4,300 m. Based on whole-genome sequencing data and demographic reconstruction of the evolutionary history, we show that two populations of plateau zokor living at elevations exceeding 3,700 m diverged from other populations nearly 10,000 years ago. Further, phenotypic comparisons reveal stress-dependent adaptation, as two populations living at elevations exceeding 3,700 m have elevated ratios of heart mass to body mass relative to other populations, and the highest population (4,300 m) displays alterations in erythrocytes. Correspondingly, genomic analysis of selective sweeps indicates that positive selection might contribute to the observed phenotypic alterations in these two extremely high elevation populations, with the adaptive cardiovascular phenotypes of both populations possibly evolving under the functional constrains of their common ancestral population. Taken together, phenotypic and genomic evidence demonstrates that heterogeneous stressors impact adaptations to extreme elevations and reveals stress-dependent and genetically constrained adaptation to hypoxia, collectively providing new insights into the high elevation adaptation
23 September 2021 • Nature Immunology
Tao Zhang,Jie Chen, Jia Zhang, Yuan-Ting Guo, Xin Zhou, Meng-Wen Li, Zhi-Zhong Zheng,Tong-Zuo Zhang, Robert W. Murphy, Eviatar Nevo, Peng Shi
Abstract
Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA–DNA hybrids, which activate the cGAS–STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.
1 September 2021 • Nature
Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., Lorz, J., ..., Pavlíček, T. & Müller, J.
Abstract
The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2,3,4,5 with decomposer groups—such as microorganisms and insects—contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect—including the direct consumption by insects and indirect effects through interactions with microorganisms—insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and −0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
13 August 2021 •
Shengguan Cai, Qiufang Shen, Yuqing Huang, Zhigang Han, Dezhi Wu, Zhong-Hua Chen, Eviatar Nevo, Guoping Zhang
Abstract
At the microsite “Evolution Slope”, Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.