Latest Publications

  • 7 March 2022 Nature Ecology & Evolution

Gabriela M. Pinho, Julien G. A. Martin, Colin Farrell, Amin Haghani, Joseph A. Zoller, Joshua Zhang, Sagi Snir, Matteo Pellegrini, Robert K. Wayne, Daniel T. Blumstein & Steve Horvath

Abstract

Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators.

Abstract

Cryptochrome (CRY) is a conserved protein associated with the circadian clock in a broad range of organisms, including plants, insects, and mammals. In Drosophila, cry is a pleiotropic gene that encodes a blue light-dedicated circadian photoreceptor, as well as an electromagnetic field sensor and a geotaxis behavior regulator. We have generated a panel of nearly-isogenic strains that originated from various wild populations and which carry different natural alleles of cry. Sequencing of these alleles revealed substantial polymorphism, the functional role of which was elusive. To link this natural molecular diversity to gene function, we relied on association mapping. Such analysis revealed two major haplogroups consisting of six linked nucleotides associated with circadian phase (haplotypes All1/All2). We also generated a maximum-likelihood gene-tree that uncovered an additional pair of haplogroups (B1/B2). Behavioral analysis of the different haplotypes indicated significant effect on circadian phase and period, as well on the amount of activity and sleep. The data also suggested substantial epistasis between the All and B haplogroups. Intriguingly, circadian photosensitivity, assessed by light-pulse experiments, did not differ between the genotypes. Using CRISPR-mediated transgenic flies, we verified the effect of B1/B2 polymorphism on circadian phase. The transgenic flies also exhibited substantially different levels of cry transcription. We, moreover, analyzed the geographical distribution of the B1/B2 haplotypes, focusing on a 12 bp insertion/deletion polymorphism that differentiates the two haplotypes. Analysis of cry sequences in wild populations across Europe revealed a geographical cline of B1/B2 indel frequency, which correlated with seasonal bioclimatic variables. This spatial distribution of cry polymorphism reinforces the functional importance of these haplotypes in the circadian system and local adaptation.

Abstract

Stripe rust is a devastating disease in wheat that causes substantial yield loss around the world. The most effective strategy for mitigating yield loss is to develop resistant cultivars. The wild relatives of wheat are good sources of resistance to fungal pathogens. Here, we used a genome-wide association study (GWAS) to identify loci associated with stripe rust (causal agent: Puccinia striiformis f. sp. tritici) resistance in wild emmer (Triticum dicoccoides) at the seedling stage, in the greenhouse, and at the adult plant stage, in the field. We found that the two major loci contributing to resistance in our wild emmer panel were the previously cloned seedling-stage resistance gene, Yr15, and the adult-plant-stage resistance gene, Yr36. Nevertheless, we detected 12 additional minor QTLs that additionally contribute to adult plant resistance and mapped a locus on chromosome 3AS that tentatively harbors a novel seedling resistance gene. The genotype and phenotype data generated for the wild emmer panel, together with the detected SNPs associated with resistance to stripe rust, provide a valuable resource for disease-resistance breeding in durum and bread wheat

Abstract

Based on the collected data on the diversity of microalgae and environmental indicators in dry and wet seasons during 2011–2018, from 45 samples, 59 species of microalgae were identified in the ornithological object—Lake Agmon in the Hula Valley. In the samples of periphyton and microphytobenthos, diatoms predominated. Bioindication analysis and statistical mapping revealed the most pronounced zones of influence on the lake ecosystem, as well as indicators of the environment and diversity that clearly demonstrate them. The correlation between the distribution of TDS of water over the lake surface and the distribution of green, diatom microalgae and cyanobacteria detected two areas of impact from the old channel of the Jordan River in the northwestern part and from the drainage channel in the northeastern parts of the lake. The area on the east coast, in contact with the resting fields of migratory birds, has provided nutrients that stimulate the development of green algae and cyanobacteria. This showed implicit links in the lake ecosystem using bioindicators make it possible to recommend them for monitoring in combination with statistical mapping, which visualizes the distribution of data and is easily accessible for the decision-making system for the management of a protected ornithological lake

Abstract

While it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the 'HbS mutation' when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible

Summary

Cylindrospermopsis raciborskii is a central bloom-forming cyanobacteria. However, despite its ecological significance, little is known of its interactions with the phages that infect it. Currently only a single sequenced genome of a Cylindrospermopsis-infecting phage is publicly available. Here we describe the isolation and characterization of Cr-LKS3, a second phage infecting Cylindrospermopsis. Cr-LKS3 is a siphovirus with a higher genome similarity to prophages within heterotrophic bacteria genomes than to any other cyanophage/cyano-prophage, suggesting that it represents a novel cyanophage group. The function, order and orientation of the 72 genes in the Cr-LKS3 genome are highly similar to those of Escherichia virus Lambda (hereafter Lambda), despite the very low sequence similarity between these phages, showing high evolutionary convergence despite the substantial difference in host characteristics. Similarly to Lambda, the genome of Cr-LKS3 contains various genes that are known to be central to lysogeny, suggesting it can enter a lysogenic cycle. Cr-LKS3 has a unique ability to infect a host with a dramatically different GC content, without carrying any tRNA genes to compensate for this difference. This ability, together with its potential lysogenic lifestyle shed light on the complex interactions between C. raciborskii and its phages

Abstract

The boletoid genera Butyriboletus and Exsudoporus have recently been suggested by some researchers to constitute a single genus, and Exsudoporus was merged into Butyriboletus as a later synonym. However, no convincing arguments have yet provided significant evidence for this congeneric placement. In this study, we analyze material from Exsudoporus species and closely related taxa to assess taxonomic and phylogenetic boundaries between these genera and to clarify species delimitation within Exsudoporus. Outcomes from a multilocus phylogenetic analysis (ITS, nrLSU, tef1-α and rpb2) clearly resolve Exsudoporus as a monophyletic, homogenous and independent genus that is sister to Butyriboletus. An accurate morphological description, comprehensive sampling, type studies, line drawings and a historical overview on the nomenclatural issues of the type species E. permagnificus are provided. Furthermore, this species is documented for the first time from Israel in association with Quercus calliprinos. The previously described North American species Exsudoporus frostii and E. floridanus are molecularly confirmed as representatives of Exsudoporus, and E. floridanus is epitypified. The eastern Asian species Leccinum rubrum is assigned here to Exsudoporus based on molecular evidence, and a new combination is proposed. Sequence data from the original material of the Japanese Boletus kermesinus were generated, and its conspecificity with L. rubrum is inferred as formerly presumed based on morphology. Four additional cryptic species from North and Central America previously misdetermined as either B. frostii or B. floridanus are phylogenetically placed but remain undescribed due to the paucity of available material. Boletus weberi (syn. B. pseudofrostii) and Xerocomus cf. mcrobbii cluster outside of Exsudoporus and are herein assigned to the recently described genus Amoenoboletus. Biogeographic distribution patterns are elucidated, and a dichotomous key to all known species of Exsudoporus worldwide is presented.

Abstract

Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual components of nutrients in the rivers of Eastern Siberia changes depending on the active layer thickness of the permafrost (ALT) and to elucidate whether the ALT is a factor that can control nutrient flux to the Arctic Ocean. The method of canonical correlation analysis was applied to the data on the concentration of nutrients in the 12 largest rivers of Eastern Siberia and the active layer thickness in their catchments. We found that the concentration of nutrients such as ammonium ion (NH4) and total phosphorus (Ptotal) in river waters is higher in catchments with a deeper active layer. The waters of the mountain rivers in the south of the region (the Chara and Vitim rivers) are the richest in nutrients. Arctic rivers such as the Indigirka and Anabar were low in nutrients. The permeability of soils also affects the discharge of nutrients into rivers with surface runoff. We conclude that in the future, in the context of global climatic changes and the projected deepening of the active layer throughout the permafrost zone of the Northern Hemisphere, an increase in the supply of nutrients to the Arctic Ocean is possible

Abstract

This paper presents data compilation for indicator species of organic pollution and trophic state of continental waters. Information was collected from research papers, monographs, electronic resources, and our research. Altogether 316 species of higher plants, plants, mosses, charophytes, protozoan, and bacteria from 11 taxonomical phyla are represented with ecological preferences for saprobity indicators with saprobity index (S) and indicators of trophic state. This comprehensive data can be used for the purpose of aquatic ecosystem assessment and monitoring of water quality based on bioindication methods.

Abstract

The presented research was conducted in 2018–2019 in the Peshawar Valley, Pakistan, to study for the first time the effect of water quality on the spatial distribution of charophytes. A total of six taxa of charophytes were found at 41 sites in the Peshawar Valley along the banks of seven rivers, 16 streams and two wetlands: Chara braunii C.C.Gmelin, C. connivens Salzmann ex A. Braun, C. contraria A. Braun ex Kützing, C. globularis Thuiller, C. vulgaris Linnaeus, and Nitellopsis obtusa (Desvaux) J. Groves. Chara vulgaris was the most abundant species, followed by C. globularis, and C. contraria. Water pH, electrical conductivity (EC), total dissolved solids (TDS), salinity and dissolved oxygen (DO) were within the permissible limits for Pakistan, while water temperature, oxidation reduction potential (ORP) and resistivity showed deviations. Canonical Correspondence Analysis (CCA) revealed that DO affected Chara vulgaris, pH and resistivity affected C. braunii, C. connivens and C. globularis, temperature and ORP affected C. contraria and Nitellopsis obtusa. Furthermore, CCA showed that TDS, EC, and salinity had no effect on the spatial distribution of Chara contraria, C. vulgaris and Nitellopsis obtusa. Chara contraria and Nitellopsis obtusa should be protected under VU (Vulnerable) status (IUCN) along with their habitats

  • 24 November 2021 • Water Journal


Olena Bilous, Sergey Afanasyev, Olena Lietytska, Oksana Manturova, Oleksandr Polishchuk, Inna Nezbrytska, Maryna Pohorielova andSophia Barinova

Abstract

The river basin of Siversky Donets is of great scientific interest since this river runs through a territory with heavy industry (in particular, coal mining, chemical processing and metal industries). Within the basin, rivers of different sizes were explored (small, medium, large and extra-large) that flow through siliceous and calcareous rocks on the same elevation (lowland—below 200 m a.s.l.). Phytoplankton, as one of the Biological Quality Element, was used to perform the assessment of ecological status of the water bodies within the Siversky Donets river basin in 2019. The state monitoring program based on the updated approaches has been implemented in the river basin for the first time. The composition of phytoplankton species in the basin comprised 167 species (168 intraspecies taxa), mainly Bacillariophyta (63%) and Chlorophyta (22%) with the presence of other species (Cyanobacteria, Charophyta, Chrysophyta, Dinophyta and Euglenophyta). High species diversity and divisions amount are a distinctive property of the smaller rivers, while the bigger rivers show lower number of divisions. The “bloom” events, which are important ecological factors, were not detected in the Siversky Donets river basin. Algal species composition in plankton samples of the basin was identified and series of ecological parameters, such as habitat preferences, temperature, pH, salinity, oxygenation and organic water pollution according to Watanabe and Sládeček’s index of saprobity (S) trophic state and nitrogen uptake metabolism were analyzed. The ecological conclusions were also verified by a canonical correspondence analysis (CCA). The significance of the Canonical Correspondence Analysis (CCA) results was estimated of by a Monte-Carlo permutation test. The high concentrations of inorganic phosphorus compounds (permanganate index (CODMn)) and nitrite ions favored the diversity of Chlorophyta and Cyanobacteria diversity correlated with the levels of bicarbonate and CODMn. High diversity of diatoms was facilitated by the total amount of dissolved solids and chemical oxygen demand (COD). It was found that low water quality could be associated with conditions leading to predominant growth of the mentioned groups of algae. According to the analysis, the highest water quality was characterized by balanced phytoplankton composition and optimal values of the environmental variables. The sites with reference conditions are proposed for future monitoring.

  • 16 July 2021 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")


Sviatoslav Rybnikov, Zeev Frenkel, Abraham B. Korol and Tzion Fahima

Abstract

Antagonistic interactions and co-evolution between a host and its parasite are known to cause oscillations in the population genetic structure of both species (Red Queen dynamics). Potentially, such oscillations may select for increased sex and recombination in the host, although theoretical models suggest that this happens under rather restricted values of selection intensity, epistasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the host can be favored over the optimal constant recombination. Two forms of the host recombination dependence on the parasite pressure were considered: either proportionally to the risk of infection (prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under either strong overall selection and high recombination rate in the host, or weak overall selection and low recombination rate in the host. In the latter case, the system’s dynamics are considerably more complex. The prevention strategy is favored more often than the remediation one. It is noteworthy that plastic recombination can be favored even when any constant recombination is rejected, making plasticity an evolutionary mechanism for the rescue of host recombination.

  • 28 May 2020 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")


Zhen-Zhen Wei, Valentyna Klymiuk, Valeria Bocharova, Curtis Pozniak and Tzion Fahima

Abstract

The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.

  • 13 March 2020 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")


Yu He, Lihua Feng, Yun Jiang , Lianquan Zhang, Jun Yan, Gang Zhao, Jirui Wang, Guoyue Chen, Bihua Wu, Dengcai Liu, Lin Huang and Tzion Fahima

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease of wheat. The wild emmer gene, Yr15 (Wtk1), which confers a strong broad-spectrum resistance to Pst isolates, is composed of kinase and pseudokinase domains. The analysis of 361 wild emmer accessions from a wide range of natural habitats confirms that functional Wtk1 is distributed mainly along a narrow axis from Mt. Carmel to Mt. Hermon regions, in the northern part of Israel, where environmental conditions are favorable to the onset of stripe rust. An analysis of full-length Wtk1 DNA sequences from 49 wild emmer accessions identified three haplotypes and extremely low nucleotide diversity (π = 0.00002). The sequence diversity of Wtk1 is 9.5 times lower than that of broad-spectrum partial resistance gene Yr36 (π = 0.00019), and both are in sharp contrast to the high level of nucleotide diversity previously reported for race-specific resistance genes (e.g., Lr10 and Pm3). However, the nonfunctional wtk1 sequences possess high level of nucleotide diversity (π = 0.07). These results may reflect the different resistance mechanisms and the different evolutionary processes that shaped these resistance genes. Yr15 was absent in 189 Chinese wheat landraces and was present in only 1.02% of the 583 tested modern Chinese wheat cultivars. These results corroborate our previous results showing that Yr15 was absent in 94% of a worldwide collection of 513 wheat cultivars, therefore indicating the importance of Yr15 in wheat stripe rust resistance breeding programs in China and elsewhere around the globe.

  • 29 November 2019 • Pathogens (Special Issue "Genomics, Molecular, Genetics, and Diversity of Plant Disease Resistance")


Moshe Ronen, Hanan Sela, Eyal Fridman, Rafael Perl-Treves, Doris Kopahnke, Alexandre Moreau, Roi Ben-David, and Arye Harel

Abstract

Net blotch (NB) is a major disease of barley caused by the fungus Pyrenophora teres f. teres (Ptt), and P. teres f. maculata (Ptm). Ptt and Ptm infect the cultivated crop (Hordeum vulgare) and its wild relatives (H. vulgare ssp. spontaneum and H. murinum ssp. glaucum). The main goal of this research was to study the NB-causing pathogen in the crop center of origin. To address this, we have constructed a Ptt (n = 15) and Ptm (n = 12) collection isolated from three barley species across Israel. Isolates were characterized genetically and phenotypically. Aggressiveness of the isolates was determined based on necrotrophic growth rate on detached leaves of barley. In addition, isolates were genetically characterized by the mating type, followed by phylogenetic analysis, clustering them into seven groups. The analysis showed no significant differentiation of isolates based on either geographic origin, host of origin or form (Ptt vs. Ptm). Nevertheless, there was a significant difference in aggressiveness among the isolates regardless of host species, geographic location or sampling site. Moreover, it was apparent that the isolates derived from wild hosts were more variable in their necrotrophic growth rate, compared to isolates sampled from cultivated hosts, thereby suggesting that NB plays a major role in epidemiology at the center of barley origin where most of the diversity lies. Ptm has significantly higher necrotrophic and saprotrophic growth rates than Ptt, and for both a significant negative correlation was found between light intensity exposure and growth rates

Abstract

Lake Hula, the core of one of the most extensive wetland complexes in the Eastern Mediterranean, was drained in 1951–1958. However, about 350 hectares of papyrus marshes were allocated in the southwestern part of the previous lake and became the Hula Nature Reserve status, the first of two wetlands in Israel included in the Ramsar List of Wetlands of International Importance. The list of algae and cyanobacteria species of Lake Hula was compiled by us for the first time based on data from publications of 1938–1958, as well as our research in the Hula Nature Reserve, obtained within the framework of the monitoring program for 2007–2013. The list includes 225 species and intraspecies of algae and cyanobacteria belonging to eight phyla. The dynamics of the species richness of algae and cyanobacteria flora for 1938–2013 are shown. Species-bioindicators of water quality have been identified, and the change in their composition by ecological groups for a period of about a hundred years has been shown. Based on the species richness of algae communities, water quality indices were calculated with particular attention to changes in trophic status during the study period. The algae flora of Lake Hula and Hula Nature Reserve was found to be similar, but bioindication has revealed an increase in salinity and organic pollution in recent years

Abstract

We studied the effect of microclimatic gradient on the spatial (8 habitats) and seasonal (autumn, winter, and summer) variations of culturable soil microfungal communities at the north-facing slope (NFS) and the south-facing slope (SFS) of Nahal Boker, the Central Negev Desert, Israel. Using the soil dilution plate method, a total of 122 species from 56 genera was isolated. The communities' composition was subjected to pronounced interslope variations in each season. While xerotolerant melanin-containing species (mainly with the protective multicellular spore morphology) predominated in the soil of NFS, peaking up in the summer, thermotolerant and thermophilic Aspergillus spp. were especially abundant at the SFS. Aspergilli also dominated the thermotolerant communities isolated at 37 °C from both slopes. The more severe microclimatic regime at the SFS resulted in the least pronounced spatial and seasonal intraslope variability of the community composition as compared to the more benign and heterogeneous NFS. The quantitative parameter—the density of microfungal isolates, exhibited significant and positive relationship with organic matter and moisture content. In seasonal dynamics, the severe summer conditions significantly reduced the differences in isolate density at the NFS, which were markedly expressed in the autumn and winter between habitats receiving additional water by runoff and the adjacent habitats that did not benefit from runoff water.

  • 25 October 2021 The Faseb journal


Shaqed Carasso, Bettina Fishman, Liel Stelmach Lask, Tamar Shochat, Naama Geva-Zatorsky, Eran Tauber

Abstract

Patterns of diurnal activity differ substantially between individuals, with early risers and late sleepers being examples of opposite chronotypes. Growing evidence suggests that the late chronotype significantly impacts the risk of developing mood disorders, obesity, diabetes, and other chronic diseases. Despite the vast potential of utilizing chronotype information for precision medicine, those factors that shape chronotypes remain poorly understood. Here, we assessed whether the various chronotypes are associated with different gut microbiome compositions. Using metagenomic sequencing analysis, we established a distinct signature associated with chronotype based on two bacterial genera, Alistipes (elevated in “larks”) and Lachnospira (elevated in “owls”). We identified three metabolic pathways associated with the early chronotype, and linked distinct dietary patterns with different chronotypes. Our work demonstrates an association between the gut microbiome and chronotype and may represent the first step towards developing dietary interventions aimed at ameliorating the deleterious health correlates of the late chronotype.

  • 1 September 2021 Molecular Biology and Evolution journal


Kapun, M., Nunez, J.C.B., (and 66 others, including Tauber, E)

Abstract

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.

  • 19 October 2021 Proceedings of the National Academy of Sciences


Quanjun Hu, Yazhen Ma, Terezie Mandáková, Sheng Shi, Chunlin Chen, Pengchuan Sun, Lei Zhang, Landi Feng, Yudan Zheng, Xiaoqin Feng, Wenjie Yang, Jiebei Jiang, Ting Li, Pingping Zhou, Qiushi Yu, Dongshi Wan, Martin A. Lysak, Zhenxiang Xi, Eviatar Nevo, and Jianquan Liu

Abstract

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.

  • 07 July 2021 Theoretical and Applied Genetics


Yinghui Li, Zhen-Zhen Wei, Andrii Fatiukha, Samidha Jaiwar, Hanchao Wang, Samiha Hasan, Zhiyong Liu, Hanan Sela, Tamar Krugman & Tzion Fahima

Abstract

Wild emmer wheat (WEW), the tetraploid progenitor of durum and bread wheat, is a valuable genetic resource for resistance to powdery mildew fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). PmG16 gene, derived from WEW, confers high resistance to most tested Bgt isolates. We mapped PmG16 to a 1.4-cM interval between the flanking markers uhw386 and uhw390 on Chromosome 7AL. Based on gene annotation of WEW reference genome Zavitan_V1, 34 predicted genes were identified within the ~ 3.48-Mb target region. Six genes were annotated as associated with disease resistance, of which TRIDC7AG077150.1 was found to be highly similar to Pm60, previously cloned from Triticum urartu, and resides in the same syntenic region. The functional molecular marker (FMM) for Pm60 (M-Pm60-S1) co-segregated with PmG16, suggesting the Pm60 ortholog from WEW (designated here as TdPm60) as a strong candidate for PmG16. Sequence alignment identified only eight SNPs that differentiate between TdPm60 and TuPm60. Furthermore, TdPm60 was found to be present also in the WEW donor lines of the powdery mildew resistance genes MlIW172 and MlIW72, mapped to the same region of Chromosome 7AL as PmG16, suggesting that TdPm60 constitutes a candidate also for these genes. Furthermore, screening of additional 230 WEW accessions with Pm60 specific markers revealed 58 resistant accessions from the Southern Levant that harbored TdPm60, while none of the susceptible accessions showed the presence of this gene. Deployment of PmG16 in Israeli modern bread wheat cultivar Ruta conferred resistance against several local Bgt isolates.

  • 05 May 2021 Plant Biotechnology Journal


Wu Q., Zhao F., Chen Y., Zhang P., Zhang H., Guo G., Xie J., Dong L., Lu P., Li M., Ma S., Fahima T., Nevo E., Li H., Zhang Y., Liu Z.

Abstract

In spite of the obvious climate changes effects on the Carpathian Basin hydrographic nets fish fauna, studies on their potential refuge habitats in drought periods are scarce. Multiannual (2016–2021) research of fish in some streams located in the Saxon Villages area during hydrological drought periods identified, mapped, and revealed the refuge aquatic habitats presence, management needs, and importance for fish diversity and abundance for small rivers. The impact of increasing global temperature and other human activities induced hydrologic net and habitats alteration, decreased the refuge habitats needed by freshwater fish, diminished the fish abundance, and influenced the spatial and temporal variation in fish assemblage structure in the studied area. The sites more than one meter in depth in the studied lotic system were inventoried and all 500 m of these lotic systems were also checked to see what species and how many individuals were present, and if there is was difference in their abundance between refuge and non-refuge 500 m sectors. The scarce number of these refuges due to relatively high soil erosion and clogging in those basins and the cumulative effects of other human types of impact induced a high degree of pressure on the fish fauna. Overall, it reduced the role of these lotic systems as a refuge and for reproduction for the fish of downstream Târnava Mare River, into which all of them flow. Management elements were proposed to maintain and improve these refuges’ ecological support capacity.

Abstract

The evolutionary outcomes of high elevation adaptation have been extensively described. However, whether widely distributed high elevation endemic animals adopt uniform mechanisms during adaptation to different elevational environments remains unknown, especially with respect to extreme high elevation environments. To explore this, we analysed the phenotypic and genomic data of seven populations of plateau zokor (Myospalax baileyi) along elevations ranging from 2,700 to 4,300 m. Based on whole-genome sequencing data and demographic reconstruction of the evolutionary history, we show that two populations of plateau zokor living at elevations exceeding 3,700 m diverged from other populations nearly 10,000 years ago. Further, phenotypic comparisons reveal stress-dependent adaptation, as two populations living at elevations exceeding 3,700 m have elevated ratios of heart mass to body mass relative to other populations, and the highest population (4,300 m) displays alterations in erythrocytes. Correspondingly, genomic analysis of selective sweeps indicates that positive selection might contribute to the observed phenotypic alterations in these two extremely high elevation populations, with the adaptive cardiovascular phenotypes of both populations possibly evolving under the functional constrains of their common ancestral population. Taken together, phenotypic and genomic evidence demonstrates that heterogeneous stressors impact adaptations to extreme elevations and reveals stress-dependent and genetically constrained adaptation to hypoxia, collectively providing new insights into the high elevation adaptation

Abstract

Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA–DNA hybrids, which activate the cGAS–STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.

  • 1 September 2021 • Nature


Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., Lorz, J., ..., Pavlíček, T. & Müller, J.

Abstract

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2,3,4,5 with decomposer groups—such as microorganisms and insects—contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect—including the direct consumption by insects and indirect effects through interactions with microorganisms—insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and −0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.

  • 13 August 2021


Shengguan Cai, Qiufang Shen, Yuqing Huang, Zhigang Han, Dezhi Wu, Zhong-Hua Chen, Eviatar Nevo, Guoping Zhang

Abstract

At the microsite “Evolution Slope”, Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.